In this posting, we treat the formalism of the two-hole and particle-hole nuclei.
Two-Hole Nuclei Formalism
Analogous to the two-particle formalism described in (https://djlab.tistory.com/3), we can write wave functions of two-hole nuclei as follows:
$$ | a^{-1} \, b^{-1} l J \, M \rangle = \mathcal{N}_{ab} [h_a^\dagger h_b^\dagger]_{JM} | {\rm HF} \rangle,$$
where state ${\rm HF}$ depends on our interest nuclei and the normalization factor is given as $\mathcal{J}_{ab} = \sqrt{1 +\delta_{ab} (-1)^J}/(1+\delta_{ab})$.
By adopting this form, we can describe the state of one-proton hole and one-neutron hole nuclei as follows:
$$ |p^{-1} \, n^{-1}; J \, M \rangle = [h_p^\dagger h_n^\dagger]_{JM }|{\rm HF} \rangle. $$
Note that nuclei with two proton (neutron) holes are even-even nuclei, while nuclei with one proton hole and one neutron are odd-odd nuclei.
Similar to the two-particle state, two-hole nuclei state has also following symmetry relation:
$$ \begin{eqnarray} && | b^{-1}\, a^{-1}; J \, M \rangle = (-1)^{j_a + j_b + J + 1} | a^{-1} \, b^{-1}; J \, M \rangle \\ && | n^{-1}\,p^{-1}; j \, M \rangle = (-1)^{j_n + j_p + J + 1} |p^{-1}\, n^{-1}l {J \, M} \rangle. \end{eqnarray} $$
As shown in the previous posting (https://djlab.tistory.com/3), $(-1)^{j_a + j_b + J}$ is derived from the symmetry properties of the Clebsch-Gordan coefficients, and the additional factor of $(-1)$ from the anti-commutation relation between two annihilation operators.
Example: A=38 Isobars ($^{38}_{18}{\rm Ar}_{20},\, ^{38}_{19}{\rm K}_{19},\, {\rm and} \ ^{38}_{20}{\rm Ca}_{18}.$)
With $|{\rm HF} \rangle$ as $|{\rm HF} = |{\rm HF}(Z=20)\rangle_\pi | $, each isobar can be described as follows:
$$ \begin{eqnarray} &&|^{38}{\rm Ar}; 0^+, 2^+ \rangle = \frac{1}{\sqrt{2}} [h^\dagger_{\pi 0 d_{3/2}}, h^\dagger_{\pi 0 d_{3/2}} ]_{0^+, 2^+} |{\rm HF} \rangle, \\[12pt] &&|^{38}{\rm K}; 0^+, 1^+, 2^+, 3^+ \rangle = [h^\dagger_{\pi 0 d_{3/2}}, h^\dagger_{\nu 0 d_{3/2}} ]_{0^+, 1^+, 2^+, 3^+} |{\rm HF} \rangle, \\[12pt] &&|^{38}{\rm Ca}; 0^+, 2^+ \rangle = [h^\dagger_{\nu 0 d_{3/2}}, h^\dagger_{\nu 0 d_{3/2}} ]_{0^+, 2^+ } |{\rm HF} \rangle. \\ \end{eqnarray}$$
Particle-Hole Nuclei
For the particle-hole nuclei, there are two types of excited states: 1) Charge-conserving type (proton (neutron) hole & proton (neutron) particle), and 2) Charge-changing type (proton (neutron) hole & neutron (proton) particle). The general formula of the particle-hole nuclei is given as
$$ |a \, b^{-1}; J\, M \rangle = [c_a^\dagger h_b^\dagger]_{JM} |{\rm HF} \rangle = [c_a^\dagger \tilde{c}_b]_{JM} | {\rm HF} \rangle, $$
which satisfies the orthonormality, i.e., $\rangle a\, b^{-1}; J\, M | c \, d^{-1}; J' \, M' \rangle = \delta_{ac} \delta_{bc} \delta_{JJ'} \delta_{MM'}.$
Then, for proton-particle and neutron-hole,
$$ | p \, n^{-1}; J \, M \rangle = [c_p^\dagger h_n^\dagger]_{JM} |{\rm HF} \rangle, $$
with $\langle p \, n^{-1}; J \, M | p' \, n'^{-1}; J\, M \rangle = \delta_{pp'} \delta_{nn'} \delta_{JJ'} \delta_{MM'}$.
For neutron-particle and proton-hole,
$$ | n \, p^{-1}; J \, M \rangle = [c_n^\dagger, h_p^\dagger]_{JM} | {\rm HF} \rangle = [c^\dagger_n \tilde{c}_p]_{JM} | {\rm HF} \rangle, $$
with $\langle n \, p^{-1}; J \, M | n' \, p'^{-1}; J \, M \rangle = \delta_{pp'} \delta_{nn'} \delta_{JJ'} \delta_{MM'}.$
These wavefunctions also have symmetric properties:
$$ \begin{eqnarray} &&|b^{-1}\,a; J \, M \rangle = (-1)^{j_a + j_b + J + 1} | a \, b^{-1}; J \, M \rangle \\[12pt] &&|n^{-1}\,p; J \, M \rangle = (-1)^{j_p + j_n + J + 1} | p \, n^{-1}; J \, M \rangle \\[12pt] &&|p^{-1}\,n; J \, M \rangle = (-1)^{j_p + j_n + J + 1} | n \, p^{-1}; J \, M \rangle \end{eqnarray} $$
Example: A=4 Isobars ($^{4}_{1}{\rm H}_{3},\, ^{4}_{2}{\rm He}_{2},\, {\rm and} \ ^{4}_{3}{\rm Li}_{1}.$)
With $|{\rm HF} \rangle = | {\rm HF} (Z=2) \rangle_\pi | {\rm HF} (Z=2) \rangle_{\nu}$,
$$\begin{eqnarray} &&|^4{\rm H}; 1^-, 2^- \rangle = [c_{\nu 0 p_{3/2}}^\dagger h_{\pi 0 s_{1/2}}^\dagger ]_{1^-, 2^-} |{\rm HF} \rangle \\[12pt] &&|^4{\rm Li}; 1^-, 2^- \rangle = [c^\dagger_{\pi 0 p_{3/2}} , h^\dagger_{\nu 0 s_{1/2}} ]_{1^-, 2^-} |{\rm HF} \rangle. \end{eqnarray} $$
For higher-lying excited states,
$$\begin{eqnarray} &&|^4{\rm H}; 0^-, 1^- \rangle = [c_{\nu 0 p_{1/2}}^\dagger h_{\pi 0 s_{1/2}}^\dagger ]_{0^-, 1^-} |{\rm HF} \rangle \\[12pt] &&|^4{\rm Li}; 0^-, 1^- \rangle = [c^\dagger_{\pi 0 p_{1/2}} , h^\dagger_{\nu 0 s_{1/2}} ]_{0^-, 1^-} |{\rm HF} \rangle. \end{eqnarray} $$
For $^{4}{\rm He}$, it can be described by the linear combination of the basic excitation states:
$$ | ^4{\rm He}; 1^- , 1^-, 2^-, 2^- \rangle = \frac{1}{\sqrt{2}} \left( [c_{\pi 0 p_{3/2}}^\dagger h_{\pi 0 s_{1/2}}^\dagger ]_{1^-, 2^-} |{\rm HF} \rangle \pm [c_{\nu 0 p_{3/2}}^\dagger h_{\pi 0 s_{1/2}}^\dagger ]_{1^-, 2^-} |{\rm HF} \rangle \right). $$
However, even a simplified model based on the mean-field approach cannot sufficiently explain the energy split observed in the experimental data. Careful choice of appropriate residual interaction is crucial, which will be treated in Chapter 8.
'Nuclear Physics > From Nucleons to Nucleus' 카테고리의 다른 글
5.5.3 Isospin Representation of Two-Particle and Two-Hole Nuclei (0) | 2024.03.05 |
---|---|
Exercise 5.16 & 5.17. (0) | 2024.03.05 |
5.5 Isospin Representation of Few-Nucleon System - (2) Tensor Operators in Isospin Representation (0) | 2024.02.28 |
5.5 Isospin Representation of Few-Nucleon Systems - (1) General Isospin Formalism (0) | 2024.02.28 |
5.3 (1) Two-particle Nuclei (0) | 2024.02.24 |