In the previous posting, we derived the magnetic dipole moment for the single particle state as follows:
(Link: 2024.04.11 - [Nuclear Physics/From Nucleons to Nucleus] - 6.1.6 Electromagnetic Multipole Moments )
\begin{eqnarray} \mu_{\rm sp} = \mu_N \frac{(1 - (-1)^{l+j+\frac{1}{2}}(2 j+ 1))}{4(j+1)} \left[g_s - g_l \left( 2 + (-1)^{l+j+\frac{1}{2}} (2j+1) \right) \right]. \end{eqnarray}
Using the above formula, for $j= l \pm 1/2$, one can evaluate the dipole magnetic moment.
For $j= l + \frac{1}{2}$,
\begin{eqnarray} \mu_{\rm sp} &=& \mu_N \frac{(1 - (-1)^{j-\frac{1}{2}+j+\frac{1}{2}}(2 j+ 1))}{4(j+1)} \left[g_s - g_l \left( 2 + (-1)^{j-\frac{1}{2}+j+\frac{1}{2}} (2j+1) \right) \right] \\[12pt] &=& \mu_N \frac{(1 - (-1)^{2j}(2 j+ 1))}{4(j+1)} \left[g_s - g_l \left( 2 + (-1)^{2j} (2j+1) \right) \right] \\[12pt] &=& \mu_N \frac{(2(j+ 1)}{4(j+1)} \left[g_s - g_l \left( - 2j + 1 \right) \right] = \mu_N \left( \frac{g_s - g_l}{2} + g_l j \right). \end{eqnarray}
For $j= l - 1/2$,
\begin{eqnarray} \mu_{\rm sp} &=& \mu_N \frac{(1 - (-1)^{j+\frac{1}{2}+j+\frac{1}{2}}(2 j+ 1))}{4(j+1)} \left[g_s - g_l \left( 2 + (-1)^{j+\frac{1}{2}+j+\frac{1}{2}} (2j+1) \right) \right] \\[12pt] &=& \mu_N \frac{(1 - (-1)^{2j+1}(2 j+ 1))}{4(j+1)} \left[g_s - g_l \left( 2 + (-1)^{2j+1} (2j+1) \right) \right] \\[12pt] &=& \mu_N \frac{-2j}{4(j+1)} \left[g_s - g_l \left(2j+3\right) \right] = \mu_N \frac{-j}{2(j+1)} \left[g_s - g_l \left(2j+2 + 1\right) \right] \\[12pt] &=& \mu_N \left[ \left( \frac{-j}{2(j+1)} \right) g_s - \left( \frac{-j}{2(j+1)} \right) g_l \left( 2j+2 \right) - g_l \left( \frac{-j}{2(j+1)} \right) \right] \\[12pt] &=& \mu_N \left[ j g_l - \left( g_s - g_l \right) \left( \frac{j}{2(j+1)} \right) \right]. \end{eqnarray}
As shown in both results, two equations depend only on $j$. Therefore, two equations can be plotted as functions of $j$, whose plots with bare $g$ factor are called Schmidt lines.
As shown in the previous posting (2024.04.29 - [Nuclear Physics/From Nucleons to Nucleus] - 6.2.2 Examples: Transitions in One-Hole Nuclei 15N and 15O), the one-particle or one-hole nuclei formula is precisely the same as the $\mu_{\rm sp}$. So, the experimental dipole moments of such nuclei are also close to the Schmidt values.
For other nuclei, experimental dipole moments are found to lie between the Schmidt lines. To reproduce experimental results, one can introduce effective $g$ factors reflecting many-body effects.
'Nuclear Physics > From Nucleons to Nucleus' 카테고리의 다른 글
각운동량의 덧셈 (1): Clebsch-Gordan 계수 (Clebsch-Gordan Coefficients) (1) | 2024.05.20 |
---|---|
Ch5 The Mean Field Shell Model (0) | 2024.05.03 |
6.2.2 Examples: Transitions in One-Hole Nuclei 15N and 15O (0) | 2024.04.29 |
6.2 Electromagnetic Transitions in One-Particle and One-Hole Nuclei - 6.2.1 Reduced Transition Probabilities (0) | 2024.04.14 |
6.1.7 Weisskopf Units and Transition Rates (0) | 2024.04.14 |